23,771 research outputs found

    Simulation-Based Hypothesis Testing of High Dimensional Means Under Covariance Heterogeneity

    Get PDF
    In this paper, we study the problem of testing the mean vectors of high dimensional data in both one-sample and two-sample cases. The proposed testing procedures employ maximum-type statistics and the parametric bootstrap techniques to compute the critical values. Different from the existing tests that heavily rely on the structural conditions on the unknown covariance matrices, the proposed tests allow general covariance structures of the data and therefore enjoy wide scope of applicability in practice. To enhance powers of the tests against sparse alternatives, we further propose two-step procedures with a preliminary feature screening step. Theoretical properties of the proposed tests are investigated. Through extensive numerical experiments on synthetic datasets and an human acute lymphoblastic leukemia gene expression dataset, we illustrate the performance of the new tests and how they may provide assistance on detecting disease-associated gene-sets. The proposed methods have been implemented in an R-package HDtest and are available on CRAN.Comment: 34 pages, 10 figures; Accepted for biometric

    Microscopic Realization of 2-Dimensional Bosonic Topological Insulators

    Get PDF
    It is well known that a Bosonic Mott insulator can be realized by condensing vortices of a bo- son condensate. Usually, a vortex becomes an anti-vortex (and vice-versa) under time reversal symmetry, and the condensation of vortices results in a trivial Mott insulator. However, if each vortex or anti-vortex interacts with a spin trapped at its core, the time reversal transformation of the composite vortex operator will contain an extra minus sign. It turns out that such a composite vortex condensed state is a bosonic topological insulator (BTI) with gapless boundary excitations protected by U(1)β‹ŠZ2TU(1)\rtimes Z_2^T symmetry. We point out that in BTI, an external Ο€\pi flux monodromy defect carries a Kramers doublet. We propose lattice model Hamiltonians to realize the BTI phase, which might be implemented in cold atom systems or spin-1 solid state systems.Comment: 5 pages + supplementary materia

    Rainbow gravity corrections to the entropic force

    Full text link
    The entropic force attracts a lot of interest for its multifunctional properties. For instance, Einstein's field equation, Newton's law of gravitation and the Friedmann equation can be derived from the entropic force. In this paper, utilizing a new kind of rainbow gravity model that was proposed by Magueijo and Smolin, we explore the quantum gravity corrections to the entropic force. First, we derive the modified thermodynamics of a rainbow black hole via its surface gravity. Then, according to Verlinde's theory, the quantum corrections to the entropic force are obtained. The result shows that the modified entropic force is related not only to the properties of the black hole but also the Planck length β„“p\ell_p, and the rainbow parameter Ξ³\gamma. Furthermore, based on the rainbow gravity corrected entropic force, the modified Einstein's field equation and the modified Friedmann equation are also derived.Comment: 10 page

    Polar Coding for the Cognitive Interference Channel with Confidential Messages

    Full text link
    In this paper, we propose a low-complexity, secrecy capacity achieving polar coding scheme for the cognitive interference channel with confidential messages (CICC) under the strong secrecy criterion. Existing polar coding schemes for interference channels rely on the use of polar codes for the multiple access channel, the code construction problem of which can be complicated. We show that the whole secrecy capacity region of the CICC can be achieved by simple point-to-point polar codes due to the cognitivity, and our proposed scheme requires the minimum rate of randomness at the encoder
    • …
    corecore